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Purpose. This study aims to develop a characterization method for coating structure based on image
analysis, which is particularly promising for the rational design of coated particles in the pharmaceutical
industry.

Methods. The method applies the MATLAB image processing toolbox to images of coated particles
taken with Confocal Laser Scanning Microscopy (CSLM). The coating thicknesses have been determined
along the particle perimeter, from which a statistical analysis could be performed to obtain relevant
thickness properties, e.g. the minimum coating thickness and the span of the thickness distribution. The
characterization of the pore structure involved a proper segmentation of pores from the coating and a
granulometry operation.

Results. The presented method facilitates the quantification of porosity, thickness and pore size
distribution of a coating. These parameters are considered the important coating properties, which are
critical to coating functionality. Additionally, the effect of the coating process variations on coating
quality can straight-forwardly be assessed.

Conclusions. Enabling a good characterization of the coating qualities, the presented method can be used
as a fast and effective tool to predict coating functionality. This approach also enables the influence of
different process conditions on coating properties to be effectively monitored, which latterly leads to
process tailoring.

KEY WORDS: coating; pore size distribution; porosity; quantitative image analysis; thickness

distribution.

INTRODUCTION

In the pharmaceutical industry, film coating has been
applied for various purposes, such as appearance, taste
masking, protection from environmental conditions and
sustained or controlled release purposes. Next to the quali-
tative and quantitative coating formulation, the coating
process conditions play an important role in determining the
final properties of the coating and its functionality (1).
Usually, the appropriate process conditions are difficult to
establish after the first development tests. Therefore, in
practice, the coating process development involves a lengthy
series of experiments characterized by many process adjust-
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ments based on the results from the functional tests of the
final product.

In the literature, it has often been demonstrated that the
coating functionality is correlated with coating properties
such as coating thickness and porosity (e.g. (2-5)). For
appearance purpose for example, pores in the coating or
inhomogeneous coating thickness distributions, both inter-
particle and intra-particle may not be a major problem.
However, for functionalities that rely on the transport
properties through the coating, e.g. extended release or
protection, coatings with homogeneous coating thickness
distribution and without pores in the coating are needed (4).
For this reason, a good characterization of the coating is
needed from which the coating functionality can be predicted.

Many coating characterization methods are based on the
average values of the total population of particles in a sample,
such as the determination of the coating thickness by
converting coating mass to thickness (6). However, this
approach is not able to give any information on the
distribution of the coating and the local coating properties,
which are needed for a better prediction of the coating
functionality. Functionality tests such as dissolution also do
not permit direct correlation with process parameters. There-
fore, this work was set out to develop a quantitative image
analysis method, which offers an approach to quantify both
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overall and local coating properties of a coated particle, i.e.
coating thickness distribution and pore size distribution along
the particle circumference. These outcomes can be correlated
directly to the process conditions used.

The application of quantitative image analysis is common
practice in fields like the metal industry to detect mechanical
defect of products during processing (7) and in the medical
field to evaluate the treatment and drug efficacy (8,9). One of
the advantages of image analysis is the possibility to perform
visual inspection to validate the analysis results. In spite of its
potency, only few papers in literature have described the
utilization of quantitative image analysis in a pharmaceutical
production environment (10-14). While a terahertz pulsed
imaging technique has shown the possibility for measuring the
coating thickness distribution on tablets (10-13), our pre-
sented method offers the possibility to quantify the complete
coating structures, comprising of the thickness and the pore
distribution, also on small particles amongst various cores.
The quantification method was performed on images ac-
quired using confocal scanning laser microscopy (CSLM),
which facilitates the non-invasive visualization of the coating
internal structure. This characterization method offers a way
to tailor the coating process more effectively.

This paper focuses on the description of the method
proposed for the characterization of coating structures, while
the correlation between the coating qualities and the process
conditions will be the subject of further investigations. We
treated the coating, which constitutes polymer and pores, as a
film layer formed over a particle. The coating has apparent
thicknesses and structures. Pores are defined to be the
macroscopic holes within the coating, which are visible with
the resolution of the imaging technique used. Further,
polymer is defined as the rest of the coating without the
visible pores. These terms will be used consistently in this

paper.

MATERIALS AND METHODS
Materials

Microcrystalline cellulose/MCC (Avicel PH102, FMC
BioPolymer), supplied by Internatio, (Zutphen, the Netherlands)
was used as pellet excipient. Hydroxy-propyl methylcellulose/
HPMC (Methocel E5 LV USP/ EP premium grade, Dow)
supplied by Colorcon (Dartford Kent, UK) was used as coating
polymer material. Carmoisine (E122, Pomona BV, Hedel, the
Netherlands) was used as pigment in the coating.

Experimental Methods
Pellet Production

The pellets were made in a high shear granulator (Gral
10, Machines Colette, Wommelgem, Belgium), with impeller
and chopper rates of 600 and 3,000 rpm, respectively. The
pellets were made by mixing 500 g of MCC with 500 g of
water, which was poured slowly (in 1 min time) from the top
of the Gral. The granulation was performed for 20 min. The
wet granules were further dried at 40°C for 8 h in the vacuum
drier (Elbanton, Kerkdriel, The Netherlands). Afterwards the
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pellets were sieved and the fraction 800-1,000 pm was used
for further experiments.

Particle Coating

The pellets were coated in the fluidized bed coater
(Mycrolab, Oystar Hiittlin, Schopfheim, Germany). 150 g of
pellets was used for each batch. The polymer solution can be
sprayed either from the bottom or the top of the column. The
spray rate in the process using top spray was set at 4.8 g/min
while for process using bottom spray, the spray rate was
varied at 2.4 g/min and at 4.8 g/min. The rest of the process
conditions, i.e. inlet air temperature, inlet air flow rate,
atomization pressure, microclimate pressure were kept con-
stant at 70°C, 25 m>h, 1.5 and 0.6 bar, respectively. The
coating process was performed until 20% weight ratio of
coating to core was sprayed. The sprayed HPMC solution was
HPMC (5% w/w in water) and carmoisine (0.1% w/w in
water) dissolved in cold water and stirring it for about 1 h.

Determination of the Circularity of the Core

The circularity of the MCC pellets was determined using
Morphologi G2 from Malvern Instruments (Worcestershire,
UK), which was based on the particle image analysis. A LU
planar 2.5x/0.075 objective (Nikon, Japan) was used to
acquire the particle images. The circularity was calculated
using the provided software (Mastersizer ver. 6.0) and was
defined as the ratio of the circumference of a circle with the
same area as the particle divided by the circumference of the
actual particle image.

Image Acquisition

The coating layer was visualized using a Confocal
Scanning Laser Microscopy (CSLM). This technique was
chosen because of its high spatial resolution and its ability to
visualize the internal structure of samples non-invasively by
optical sectioning. In this analysis, the carmoisine acts as a
fluorescent marker, which permits the visualization of the
coating layer and the differentiation of the coating layer from
the core. This relies on the good distribution of carmoisine in
the HPMC films. This aspect was verified by the absence of
hot-spots in the resulted CSLM images, which would have
been the signs for inhomogeneous distribution of carmoisine
in the HPMC films. Additionally, carmoisine has been used as
pigment in diverse HPMC formulations (15-17), where any
incompatibility (that leads to separation) between carmoisine
and HPMC has not been reported.

The CSLM system used was a Leica inverted microscope
DM IRE2 TCS SP2 (Leica microsystems, Germany). A green
laser (HeNe 543 nm/1.2 mW) and a red laser (HeNe 633 nm/
10 mW) were used at 100% and 37.66% intensity settings. A
HC Plan Fluotar 10%/0.30 objective was used with a zoom
factor of 1 or 10 resulting in scanned areas of 1,500x1,500 um
or 150150 um and depth of fields of 50 or 5 um, respectively.
These two optical settings were used to acquire images for the
characterization of coating thickness distribution and pore
structure, respectively. The emission of the sample was
collected at 652-716 nm. The acquired images were 1,024 x
1,024 pixels and have a gray resolution of 8 bit. Immersion oil
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type B (Cargille Lab, USA) was added to the coated particles
prior to scanning. No interaction between the HPMC
polymer and the immersion oil used is expected as HPMC is
known as a barrier material against oils (18). For every
sample from different process conditions, the images for the
thickness determination were taken from three different
particles. From each particle two images were taken from
two random sides of the coating for the characterization of
the pore structure.

Quantitative Image Analysis

The quantitative image analysis was performed using the
image processing toolbox provided in MATLAB R2007a. The
quantification comprised the determination of the coating
thickness distribution, the porosity and the pore size distribution.

Coating Thickness Distributions

A typical CSLM image acquired for the coating thickness
analysis is shown in Fig. 1A. Before the images were ready to
be used for the thickness analysis, several steps had to be
performed, comprising the image contrast enhancement and
the image binarization. The contrast enhancement was
performed using Contrast-Limited Adaptive Histogram
Equalization (ADAPHISTEQ) command in the MATLAB
image processing toolbox. In this work, a tile size of 15x
15 pixels was used, and the corresponding result of the
contrast enhancement on the given image example is shown
in Fig. 1B. The results and discussion section gives a
justification for the choice of these settings.

The image binarization was performed by using the
Isodata threshold algorithm (19). In the resulted binary
images, the pore and the polymer pixels have the intensity
of ‘0’ (black) and ‘1’ (white), respectively, such as shown in
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Fig. 1C. Afterwards, the pores within the coating were closed,
i.e. the pixel of the pores were set to ‘1’ (Fig. 1D). This means
that the coating thickness was defined as the total (apparent)
thickness including the pores inside the coating.

There are three algorithms that were used to determine
the coating thickness distribution, the “Radius” method and
two variations of the “Euclidean distance” method. In the
“radius” method, the thickness analysis started by determining
the centre of the particle (called centroid), and the inside
boundary (facing the core) and the outside boundary (facing
the background) of the coating layer, such as shown in Fig. 1E,
F, respectively. The centroid was determined using the
REGIONPROPS command, while the coating boundaries
were determined using the BWBOUNDARIES command
provided in the MATLAB image processing toolbox. The
number of the inside and outside boundary pixels is typically
above 1,500, which varies slightly depending on the particle
and coating roughness. The centroid and each of the inside
boundary points were then connected with straight lines. This
was repeated for all outside boundary pixels, as illustrated in
Fig. 2 (left). The length of the line segments connecting the
centroid-outside boundary and the centroid-inside boundary
that run in the same direction are subtracted from each other.
The results were taken as the coating thickness. In this way, the
variation of the coating thickness along the particle circumfer-
ence was measured, as depicted in Fig. 2 (right).

From the thickness measurements, we built a coating
thickness distribution and a cumulative thickness distribution
per particle, which form the basis for a statistical analysis. We
obtained the estimation for the minimum coating thickness and
the span (width) of the coating thickness distribution were also
derived. The relative span of the coating thickness is defined as

AX300% — AXn10%
AX,50%

Span = (1)

E
Centroid
*

Fig. 1. Image processing steps for the coating thickness characterization. A Raw image. B After contrast
enhancement. C After binarization. D After filling the pores within the coating. E Determining the centroid.
F Determining the outside and inside boundaries.
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Fig. 2. Schematic figure on how the coating thickness was determined using the present image analysis.

where , AX,, 10%, AX, 50%, AX, 009 are the percentiles of the
(number) thickness distribution at respectively 10%, 50%
(median) and 90%.

The two “Euclidean distance” methods measure the
minimum coating thickness from each pixel on the inner to
the outer boundary of the coating or vice versa. In this paper,
the coating thickness was mainly measured using the “radius”
method. The “Euclidean distance” methods have been used
as an alternative for the “radius” method. The results from
these methods are compared and presented in the results and
discussion section.

Quantification of the Porous Structure

Before pore characterization, the contrast of the CSLM
images was enhanced and the images were transformed from
gray-scale to binary images in a way similar to the procedure for
the coating thickness analysis. Fig. 3A-I show the typical
transformation results after the subsequent image processing
steps for the pore characterization. Due to the complexity of the
porous structure, a different method (i.e. based on Fuzzy
c-means cluster) was used during the image binarization. In this
algorithm, the pixel intensities were classified into n (n>3)
clusters using the Fuzzy Clustering method (20,21). These
clusters have mean intensities that increase from the lowest
(cluster 1) to the highest (cluster n). This paper used two
thresholds during the image binarization: the threshold between
cluster 1 and 2 (called the lower threshold) and the threshold
between cluster 2 and 3 (called the higher threshold). The
typical binarization results of using lower and higher thresholds
are presented in Fig. 3C,D. The colors red and blue were added
to these images (also to Fig. 3G) to aid the illustration of the
coating and pore boundaries, respectively. Using the lower
threshold value, only pixels that are very dark (low intensity)
are segmented as pores or otherwise they would be segmented
as polymer. This thresholding results in a more accurate
determination of the coating boundaries (see Fig. 3C). In
contrast, using the higher threshold value, more pores are
visible, while some portion of the polymer disappears, as only

the very bright pixels (having high intensity) are segmented as
polymer (see Fig. 3D).

Therefore, the next step was taken to combine the
binarization results using lower and higher thresholds in
order to obtain a binary image, which closely resembles the
raw image. As the coating segmented using lower threshold
(Fig. 3C) is bigger than the coating segmented using higher
threshold (Fig. 3D), the algorithm started by defining the
difference between these two binarized images, resulting in
Fig. 3E). Afterwards, the intersection between the images
obtained using the two thresholds was determined, resulting
in Fig. 3F. This implies that only the polymer pixels that exist
in both images (Fig. 3D,E) are taken, which otherwise are
taken as black pixels in the new figure (Fig. 3F). As a result,
all pores present in both images within the coating boundaries
(i.e. segmented using the higher threshold) are shown in the
new image (Fig. 3F). The last step was to add the images
obtained from these two steps (Fig. 3E,F), which result is
shown in Fig. 3G. Mathematically, the algorithm that
combines the images can be written as:

Fig3G = Fig 3E + Fig 3F )
= (Fig3C — Fig3D') U (Fig3C N Fig3D)

where the first and the second terms in the equation are equal
to Fig. 3EF, respectively. Fig. 3D’ is an image obtained after
filling the pores (removing the pores) in Fig. 3D with white
pixels.

In some images, some white pixels can be found
disconnected from the rest of the coating, either outside the
main coating or inside the pores, as shown in Fig. 3G. These
disconnected pixels, further called “loose pixels” were
considered differently, dependent on their spatial distance to
the main coating. If they are very close, they were considered
to be a part of the coating, which was disconnected during
image binarization due to the presence of surrounding
polymer pixels with a low intensity as a result of the so called
“partial volume effect” between them. However, if they are
quite far from the main coating or inside the pores (so called
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Fig. 3. Image processing steps for the pore characterization: A Raw image. B After contrast enhancement.
C Binarization result using a threshold between low and medium intensity clusters. D Binarization result
using a threshold between medium and high intensity clusters. E Image resulted after filling the pores in
image D and subtracting the obtained image from image C. F Image resulted after intersecting image C and
D. G Image resulted after adding image E and F. Red and green colors indicate the coating and the pore
boundaries, respectively. H After selecting only the connecting pixels. Blue color indicates the analyzed
coating region. I After removing the floating pixels inside the pores and taking the pores out of the coating.

“floating pixels’), they can not physically be a part of the
coating and hence were considered as image noise. There-
fore, an extra operation was performed to connect only the
nearby loose pixels to the main coating and to exclude the
distant loose pixels and the loose pixels in the pores from
the analysis. To connect the nearby loose pixels to the main
coating, a closing (a dilation followed by erosion) operation
was performed (22). By selecting only the pixels between the
connecting coating and pore boundaries, the rest of the loose
pixels were automatically removed. The result example of this
operation is shown in Fig. 3H. The blue shade reflects the area
of the polymer, which was used for the analysis. The quantifi-
cation of the porosity was then performed on this image.

Porosity. The coating does not cover the whole area of the
image, of which a large proportion is constituted by the
background and the particle core (here the particle core was
also considered as background). This background is indistin-
guishable from the pores based on the pixel intensity. Therefore
extra procedure was performed to separate the pores from the

coating. This was performed by inversing the image thereby the
pores become the true elements of the image and followed by
inversing only the background back from white to black pixels.
The result of this step is shown in Fig. 31, where pores are shown
as white pixels and the rest of the coating and the background
shown as black pixels. Using this image, the porosity was
quantified. The area of the pores was determined by calculating
the area of the pores, which have been segmented from the
coating (Fig. 3I). The porosity was then calculated by dividing
the area of pores by the area of the coating, which was the total
area of the polymer and the pores.

P it Area of pores
orosity = —————
Y= Areaof coating

_ Area of pores
~ Area of polymer + Area of pores

©)

Pore Size Distribution. The pore size distribution was
measured by using a method from image processing called “a
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Fuzzy c-means
cluster

Fuzzy c-means
cluster

Fig. 4. Comparison in the binarization results by using different
thresholding and image preparation settings. A Using Isodata
thresholding. B Using tile size=10 during image contrast enhance-
ment C and D Using three and four clusters during fuzzy c-means
cluster thresholding, respectively. Red and green colors indicate the
coating and the pore boundaries, respectively.

morphological sieve” as used by Wu et al. (14). The principle
of the approach has been comprehensively described and can
be found in the original paper. The granulometry was
performed on the images obtained after pore separation
procedure (Fig. 31). By applying closings with structuring
element with increasing size, the pores progressively disappear
and the remaining area of the white pixels at each size step was
computed. As the result, a curve between the area of the white
pixels (the area of pores) and its corresponding structuring
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element size (pore size) was derived. The difference between
the area of the white pixels at certain pore size and the area of
the white pixels at one step pore size behind is the area of the
pore at its corresponding size. The results were normalized
with the total area of pores and presented as the cumulative
relative area distribution of the pore size.

RESULTS AND DISCUSSION
Image Preparation: Image Binarization

After the phases in the image, i.e. pores, polymer and
background are well segmented, the quantification can
readily be performed. Therefore, the binarization step is very
critical as the quantification results are dependent on the
segmentation results. One of the advantages of using image
analysis is the possibility to perform the evaluation of the
method visually.

Fig. 4A,D show the differences in the binarization results
using two different threshold selection methods: Isodata
versus Fuzzy c-means cluster, respectively. It can be seen that
the binary image obtained using fuzzy c-means cluster
thresholding, resembles the original image better than the
Isodata method.

Additionally, the tile size used during the image contrast
enhancement and the number of clusters used during thresh-
olding were found to be important, as illustrated in Fig. 4B—
D. Here, it can be seen using tile size 10x10 pixels (Fig. 4B),
less pores are segmented than using the thresholding
conditions used in Fig. 4(D). Using three clusters in the fuzzy
c-means cluster thresholding (Fig. 4C), a small portion of
coating is not visible in the resulting binary image. At
different combination of thresholding conditions, the resulted
binary images were visually compared. In this way, the tile
size and the number of clusters used were optimized. The
chosen settings for the tile size and the number of clusters are
15x15 pixels and 4, respectively. Considering their significant
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Fig. 5. Comparison between the theoretical average coating thickness with the average coating
thickness measured using the present method. The theoretical average of coating thickness was
calculated from the amount of coating solution sprayed to the particles, according to Eq. 4.
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influence on the quantification results, values were kept
constant in this study.

Evaluation of the Characterization of the Coating Thickness
Distribution

The average coating thickness measured using the
present method and the theoretical average coating thickness
were compared, the results are shown in Fig. 5. Here,

examples are taken from the coating made in the fluidized
bed using bottom and top spray systems. In this paper, the
theoretical coating thickness was calculated from the amount
of coating polymer sprayed in a certain time, following Eq. 4.
In this equation, A-xlheoreticab Fspray’ L, Cpolv Mped, dcorea Pcore
and p, are the coating thickness, the mass spraying rate of
the coating solution, the process time, the polymer concen-
tration in the coating solution, the total mass of the core
particles to be coated, the average diameter of the core

Table I. Comparison Between the Radius Method (Taking Coating Thickness as the Radius from Inside to Outside Boundaries) and
Euclidean Distance Methods (Taking the Coating Thickness as the Euclidean Distance from Inside to Outside Boundaries and Vice Versa)

Radius from inside to outside boundaries Euclidean distance from inside to outside Euclidean distance from outside to inside
boundaries boundaries
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particles and the true density of the core and coating polymer,
respectively.

Fspray X1 X Cpol X Peore X deore

)

AXtheoretical = 6 x m X p
bed pol

It can be seen in Fig. 5, that the measured thicknesses do
not always correspond well with the theoretical thicknesses,
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especially at low theoretical thicknesses (coating thicknesses
after a short spraying time). In the present approach, the porosity
was also included into the determination of the coating thickness
(see Section Coating Thickness Distributions). In the beginning
of the coating process, the coating film is very porous (see the
CSLM image inserted in Fig. 5 top-left corner). Furthermore, it
can be noticed in this figure that the coating thickness does not
increase significantly with the spraying time. This effect is
actually due to the reduction of the porosity in time, which is

Table II. The Effects of Varying the Nozzle Position and Spraying Rate on the Coating Qualities

Nozzle position Bottom Bottom Top
Spraying rate (g/min) 2.4 4.8 4.8
Minimum coating thickness (pm) 0+6.87 18.68+5.65 3.82+2.82
Average coating thickness (pum) 28.08+10.36 31.04+3.04 31.10+£9.48
Maximum coating thickness (pm) 56.74+9.27 64.62+4.75 72.59+15.35
Relative span of coating thickness distribution (—) 1.48+0.81 0.80+0.17 1.26+0.15
Total porosity (%) 3.38+0.60 3.03+0.37 6.77+0.43
Average pore size (pm) 0.50 0.51 2.28
Pore size at which 90% (number based) of the pores are undersized, dpore 00 (m) 0.91 1.12 6.01
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indicated in the CSLM image of the coating sample taken from
the end of coating process (see Fig. 5 top-right corner). This
particular subject will be discussed further in a separate paper.

Measuring the thickness along the particle circumference
shows the inhomogeneity of the coating thickness on each
particle, i.e. intra-particle standard deviation of the coating
thickness. Additionally, among different particles, the average
thickness and the span of the distribution may also differ,
resulting in a degree of inter-particle standard deviation of
the coating thickness.

Fig. 6 shows the difference in the intra-particle and inter-
particle variations of the coating thickness, which belong to
the coatings made with bottom and top spray given as
examples. A batch with small variation in the average coating
thickness between particles does not assure a narrow coating
thickness distribution of each particle. When it happens that
the intra-particle variation of the coating thickness is high, the
characterization of the intra-particle distribution becomes
more critical, as it is the one that is responsible for determining
the coating functionality. It is shown in Fig. 6 that in general the
variations in the coating thickness on each particle are higher
than the variations of the coating thickness between the
particles. This is valid even for coating film made using top-
spray system, which has high inter-particle variation in the
thickness. Therefore, in the present situation, the focus will be
on the intra-particle variation of the coating thickness.

973

Table I shows the results of using the “radius” method
for determining the coating thickness distribution, which is
compared to other possible methods: taking the coating
thickness as the “Euclidean distance” from the inside to the
outside boundaries and vice versa. Here, examples are taken
from coatings made from processes using spraying rate of
4.8 g/min where the nozzle was positioned either at the
bottom or the top of the fluidized bed column. These coating
conditions lead to two different coating morphologies: a non-
porous and a porous coating.

It can be seen in Table I that the coating thicknesses
determined using the “radius” method are higher than the
ones determined using the “Euclidean distance” methods.
For porous coating, the span of the coating thickness
distribution determined using the “radius” method is higher
than the one determined using the “Euclidean distance”
methods. The “Euclidean distance” methods always look for
the shortest distances from inside to outside boundaries or
vice versa. In this way, the complete curvature of the coating
layer can not be identified as some points at the coating
boundaries are skipped (as pointed by the arrows). There-
fore, particularly for a coating with large thickness variation,
the “Euclidean distance” method is not able to give the true
thickness distribution. In contrast, the “radius” method covers
all boundary points of the coating (including along protrusions
of the coating), therefore giving a better estimation of the

£=9.64%

Fig. 8. Inhomogeneity of the coating structures.
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variation in the coating thickness. A disadvantage of the
“radius” method is that the boundary thickness is measured
along a path through the object’s centroid. This does not
guarantee that the measurement is performed perpendicular
to the local contour especially for roughly shaped particles.

Nevertheless, the Euclidean distance method has a
particular advantage. The way that the Euclidean distance
method always seeks for the minimum distance from one
boundary point to another is analogous to the phenomena
occurring during the functioning of the coating, e.g. the
diffusion of active substance from the core to the environment
through the coating membrane or the diffusion of moisture and
oxygen from the environment to the core.

Being aware of both the advantages and the disadvantages
of the possible methods used to determine the coating thickness, it
was decided to use the “radius” method in this paper. The reason
was because this method is more sensitive in revealing the
variation in the coating thickness distribution, which is our current
interest. This information can then be used to investigate the
effect of different process conditions. Moreover, the values of the
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minimum coating thicknesses obtained using the different
methods appeared to be in the same order of magnitude (Table I).

Examples of the characterized coating thickness distri-
butions are shown in Fig. 7, taken from particles coated at low
(2.4 g/min) and high (4.8 g/min) spraying rates using bottom
spray and high spraying rate using top spray. The samples
were taken after similar amount of coating solution were
sprayed. It is shown that the thickness distributions of the
coating made at these three different conditions are clearly
distinguished. The minimum, average and maximum coating
thickness and the span of the coating thickness distribution
were also derived and are depicted in Table II. Coatings with
the same average thickness can appear to have significantly
different minimum thickness, as found in the thickness
properties of these three different coatings (see Table II).
The imperfect coverage of the particles coated at low
spraying rate was clearly visible, i.e. the minimum thickness
is zero. Furthermore, it is possible to calculate the fraction of
the total surface of the particle which is not covered by the
coating from the frequency distribution of the coating
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thicknesses. In the case of sample coated at low spraying rate,
this fraction is around 6% (Fig. 7). This ability to quantify the
difference in the minimum coating thickness enable the
anticipation of coating functionality failure due to the
presence of a very thin local thickness.

The large variation between the minimum and the
maximum thickness of the coating made at a low spraying rate
is also shown in the higher span of the thickness distribution.
This parameter shows the variation of the coating thickness
along the particle perimeter. Additionally, the inter-particle
variation (shown as the error range of the thickness properties)
of the coating film made at a low spraying rate is also the
largest. On the other hand, the variations are lower in coating
made using a higher spraying rate. By using these character-
ization results, the appropriate adjustments can be made with
regards to the process coating conditions.

Evaluation of the Characterization of the Coating Porosity

The reliability of the current analysis method for the
characterization of the pore structure was also evaluated. For
this reason, extra samples were taken from particles coated
using the top spray method, from which 10 images at random
positions along the particles perimeter were taken and
quantified, as shown in Fig. 8. This coated particle was
chosen as it represents the most inhomogeneous pore
structure found in the coating. The average porosity deter-
mined from 10 images is 7.1% and the porosity values from
each image can deviate to about 10% relative to the average
value. Using the current sampling method, where 6 images
were used comprising two images from three different
particles, the average porosity for this coated particle was
found to be 6.3%, with relative deviation to about 14% of the
average value. This difference due to the sampling limitation
is systematically present in every compared batch, which
therefore will not alter the interpretation of the data.

Evaluation of the Characterization of the Pore Size Distribution

In order to make a more detailed study of the porous
structure the pore size distribution of the coating has been
determined. The advantage of the present image analysis is
that not only the porosity but also the pore size distribution
can be quantified. Examples of the characterization results
are depicted in Fig. 9, showing the derived fractional area and
cumulative distributions of the pore size. It can be seen that
coating sprayed using the top spray has a wide variation in
pore size. This data should be used together with the porosity
data to fully evaluate the pore structure of the coating, such
as depicted in Table II. From this result, it can be verified that
the coating made using top spray not only has a higher
porosity but also possesses a bigger pore size, compared to
the coating made using bottom spray.

Furthermore, the characterization of coating structure
presented in this paper is non-invasive. This is of course
preferable as many other methods require some preparation
steps e.g. cutting or embedding of the coating layer, which
may alter the coating structure.
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CONCLUSIONS

It has been demonstrated, that using the presented image
analysis methods, the coating thickness distribution along the
particle perimeter, the porosity and also the pore size
distribution can be adequately quantified. These parameters
are the determining factors for the coating properties and
functionality. From the examples given, it has also been
illustrated how the influence of different process conditions
on the coating properties can be monitored using the
presented approach. Further work is ongoing to develop a
correlation between the process settings and the coating
qualities, from which the coating characterization results can
be proposed to be used as a feedback to control the coating
process to assure a coating product with the desired quality.
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